

1

Scrum and CMMI Level 5: The Magic Potion for Code Warriors

Jeff Sutherland, Ph.D.
Patientkeeper Inc.

jeff.sutherland@computer.org

Carsten Ruseng Jakobsen
Systematic Software Engineering

crj@systematic.dk

Kent Johnson
AgileDigm Inc.

kent.johnson@agiledigm.com

Abstract

Projects combining agile methods with CMMI1

are more successful in producing higher quality
software that more effectively meets customer needs at
a faster pace. Systematic Software Engineering works
at CMMI level 5 and uses Lean Software Development
as a driver for optimizing software processes. Early
pilot projects at Systematic showed productivity on
Scrum teams almost twice that of traditional teams.
Other projects demonstrated a story based test driven
approach to software development reduced defects
found during final test by 40%.

 We assert that Scrum and CMMI together bring a
more powerful combination of adaptability and
predictability than either one alone and suggest how
other companies can combine them.

1. Introduction

Successful software development is challenged by
the supplier’s ability to manage complexity,
technology innovation, and requirements change. Agile
and CMMI methods both address these challenges but
have very different approach and perspective in
methods applied.

Management of complexity requires process
discipline while management of change requires
adaptability. CMMI provides process discipline and
Scrum enhances adaptability. This paper provides an
analysis of the effect of introducing Agile practices
into a CMMI Level 5 company.

1.1. CMMI

The Capability Maturity Model (CMM) has
existed since 1991, as a model based on best practices
for software development. It describes an evolutionary
method for improving an organization from one that is
ad hoc and immature to one that is disciplined and
mature [1]. The CMM is internationally recognized
and was developed by the Software Engineering

1 ® Capability Maturity Model, CMM and CMMI are
registered in the U.S. Patent and Trademark Office

Institute at Carnegie Mellon University, Pittsburgh, USA.
In 2002, a new and significantly extended version

called CMMI was announced, where the ‘I’ stands for
‘Integration.”. In 2006 version 1.2 of the model was
published [2].This model integrates software engineering,
systems engineering disciplines, and software acquisition
practices into one maturity model. CMMI defines 25
process areas to implement. For each process area required
goals, expected practices and recommended sub-practices
are defined. In addition a set of generic practices must be
applied for all processes.

The past 15 years of experience with CMM and
CMMI, demonstrates that organizations appraised to
higher levels of CMM or CMMI improve the ability to
deliver on schedule, cost, and agreed quality. Increasingly,
the industry requires suppliers to be appraised to CMM or
CMMI level 3 or higher [3]. A number of governmental
organizations worldwide, have established CMMI
maturity requirements. Recently the Danish Minister of
Science proposed regulations to require public
organizations to request documentation of their supplier’s
maturity [4].

1.2. Scrum

Scrum for software development teams began at Easel
Corporation in 1993 [5] and emerged as a formal method
at OOPSLA’95 [6]. A development process was needed to
support enterprise teams where visualization of design
immediately generated working code. Fundamental
problems inherent in software development influenced the
introduction of Scrum:
• Uncertainty is inherent and inevitable in software

development processes and products - Ziv’s
Uncertainty Principle [7]

• For a new software system the requirements will not
be completely known until after the users have used it
- Humphrey’s Requirements Uncertainty Principle [8]

• It is not possible to completely specify an interactive
system – Wegner’s Lemma [9]

• Ambiguous and changing requirements, combined
with evolving tools and technologies make
implementation strategies unpredictable.
“All-at-Once” models of software development

uniquely fit object-oriented implementation of software

2

and help resolve these challenges. They assume the
creation of software involves simultaneous work on
requirements, analysis, design, coding, and testing,
then delivering the entire system all at once [10].

Sutherland and Schwaber, co-creators of Scrum
joined forces with creators of other Agile processes in
2001 to write the Agile Manifesto [11]. A common
focus on working software, team interactions, customer
collaboration, and adapting to change were agreed
upon as central principles essential to optimizing
software productivity and quality.

2. Guide for mixing CMMI and Agile

2.1. How CMMI can improve Agile

Our focus is on using CMMI to help an organization
institutionalize Agile Methods. We have all heard
Agile Methods described by some as just another
disguise for undisciplined hacking and of some
individuals who claim to be Agile just because they
“don’t document.” We believe the value from Agile
Methods can only be obtained through disciplined use.
CMMI has a concept of Institutionalization that can
help establish this needed discipline.

Institutionalization is defined in CMMI as “the
ingrained way of doing business that an organization
follows routinely as part of its corporate culture.”
Others have described institutionalization as simply
“this is the way we do things around here.” Note that
institutionalization is an organizational-level concept
that supports multiple projects.

CMMI supports institutionalization through the
Generic Practices (GP) associated with all process
areas. For the purposes of our discussion, we will look
at the 12 generic practices associated with maturity
levels 2 and 3 in the CMMI [14] and how they might
help an organization use Agile Methods. We have
paraphrased the generic practices (shown in bold text
below) to match our recommended usage with Agile
Methods. In CMMI terms, the projects in an
organization would be expected to perform an activity
that accomplished each of these generic practices. We
have used Scrum as the example Agile Method to
describe some of the activities that relate to these
practices.

2.1.1. Establish and maintain an organizational
policy for planning and performing Agile Methods
(GP 2.1). The first step toward institutionalization of
Agile Methods is to establish how and when they will
be used in the organization. An organization might

determine that Agile Methods will be used on all projects
or some subset of projects based on size, type of product,
technology, or other factors. This policy is a way to
clearly communicate the organization’s intent regarding
Agile Methods. In keeping with the Agile Principle of
face-to-face conversions at “all hands meeting” or a visit
by a senior manager during a project’s kick off could be
used to communicate the policy.
2.1.2. Establish and maintain the plan for performing
Agile Methods (GP2.2). This practice can help ensure
that Agile Methods do not degrade into undisciplined
hacking. The expectation is that Agile Methods are
planned and that a defined process exists and is followed.
The defined process should include a sequence of steps
capturing the minimum essential information needed to
describe what a project really does. The plan would also
capture the essential aspects of how the other 10 generic
practices are to be implemented in the project. In Scrum,
some of this planning is likely to be captured in a product
backlog and/or sprint backlog, most likely within a tool as
opposed to a document.
2.1.3. Provide adequate resources for performing Agile
Methods (GP 2.3). Every project wants, needs, and
expects competent professionals, adequate funding, and
appropriate facilities and tools. Implementing an activity
to explicitly manage these wants and needs has proved
useful. In Scrum, for example, these needs may be
reviewed and addressed at the Sprint Planning Meeting
and reconsidered when significant changes occur.
2.1.4. Assign responsibility and authority for
performing Agile Methods (GP 2.4). For a project to be
successful, clear responsibility and authority need to be
defined. Usually this includes a combination of role
descriptions and assignments. The definitions of these
roles identify a level of responsibility and authority. For
example, a Scrum Project would assign an individual or
individuals to the roles of Product Owner, ScrumMaster,
and Team. Expertise in the Team is likely to include a mix
of domain experts, system engineers, software engineers,
architects, programmers, analysts, QA experts, testers, UI
designers, etc. Scrum assigns the team as a whole the
responsibility for delivering working software. The
Product Owner is responsible for specifying and
prioritizing the work. The ScrumMaster is responsible for
assuring the Scrum process is followed. Management is
responsible for providing the right expertise to the team.
2.1.5. Train the people performing Agile Methods (GP
2.5). The right training can increase the performance of
competent professionals and supports introducing new
methods into an organization. Institutionalization of the
Agile Method being used requires consistent training. This
practice includes determining the individuals to train,
defining the exact training to provide, and performing the
needed training. Training can be provided using many

3

different approaches, including programmed
instruction, formalized on-the-job training, mentoring,
and formal and classroom training. It is important that
a mechanism be defined to ensure that training has
occurred and is beneficial.
2.1.6. Place designated work products under
appropriate level of configuration management (GP
2.6). The purpose of a project is to produce deliverable
product(s). This product is often a collection of a
number of intermediate or supporting work products
(code, manuals, software systems, build files, etc.).
Each of these work products has a value and often goes
through a series of steps that increase their value. The
concept of configuration management is intended to
protect these valuable work products by defining the
level of control, for example, version control or
baseline control and perhaps multiple levels of baseline
control to use within the project.
2.1.7. Identify and involve the relevant stakeholders
as planned (GP 2.7). Involving the customer as a
relevant stakeholder is a strength of Agile Methods.
This practice further identifies the need to ensure that
the expected level of stakeholder involvement occurs.
For example, if the project depends on customer
feedback with each increment, build, or sprint, and
involvement falls short of expectations it is then
necessary to communicate to the appropriate level,
individual, or group in the organization to allow for
corrective action as corrective action may be beyond
the scope of the project team. In advanced Scrum
implementations, this is often formalized as a
MetaScrum [17] where stakeholders serve as a board
of directors for the Product Owner.
2.1.8. Monitor and control Agile Methods against
the plan and take appropriate corrective action (GP
2.8). This practice involves measuring actual
performance against the project’s plan and taking
corrective action. Direct day-to-day monitoring is a
strong feature of the Daily Scrum Meeting, the Release
Burndown Chart shows how much work remains at the
beginning of each Sprint, and the Sprint Burndown
Chart shows total task hours remaining per day. Scrum
enhances the effectiveness of the plan by allowing the
Product Owner to inspect and adapt to maximize ROI,
rather than merely assuring plan accuracy.
2.1.9. Objectively evaluate adherence to the Agile
Methods and address noncompliance (GP2.9). This
practice is based on having someone not directly
responsible for managing or performing project
activities evaluate the actual activities of the project.
Some organizations implement this practice as both an
assurance activity and coaching activity. The coaching
concept matches many Agile Methods. The
ScrumMaster has primary responsibility for adherence

to Scrum practices, tracking progress, removing
impediments, resolving personnel problems, and is usually
not engaged in implementation of project tasks. The
Product Owner has primary responsibility for assuring
software meets requirements and is high quality.
2.1.10. Review the activities, status, and results of the
Agile Methods with higher-level management and
resolve issues (GP2.10). The purpose of this practice is to
ensure that higher-level management has appropriate
visibility into the project activities. Different managers
have different needs for information. Agile Methods have
a high level of interaction, for example, Scrum has a
Sprint Planning Meeting, Daily Scrum Meetings, a Sprint
Review Meeting, and a Sprint Retrospective Meeting.
Management needs are supported by transparency of
status data produced by the Scrum Burndown Chart
combined with defect data. Management responsibilities
are to (1) provide strategic vision, business strategy, and
resources, (2) remove impediments surfaced by Scrum
teams that the teams cannot remove themselves, (3) ensure
growth and career path of staff, and (4) challenge the
Scrum teams to move beyond mediocrity. The list of
impediments generated by the Scrum teams is transparent
to management and it is their responsibility to assure they
are removed in order to improve organizational
performance.
2.1.11. Establish and maintain the description of Agile
Methods (GP 3.1). This practice is a refinement of GP2.2
above. The only real difference is that description of
Agile Methods in this practice is expected to be
organization-wide and not unique to a project. The result
is that variability in how Agile Methods are performed
would be reduced across the organization; and therefore
more exchange between projects of people, tools,
information and products can be supported.
2.1.12. Collect the results from using Agile Methods to
support future use and improve the organization’s
approach to Agile Methods (GP 3.2).
This practice supports the goal of learning across projects
by collecting the results from individual projects. The
Scrum Sprint Retrospective Meeting could be used as the
mechanism for this practice.

All of these generic practices have been useful in
organizations implementing other processes. We have
seen that a number of these generic practices have at least
partial support in Scrum or other Agile Methods. We
believe that implementing these practices can help
establish needed discipline to any Agile Method.

2.2. Critiques of CMM

In research funded by the Danish government, Rose
et. al. surveyed the literature on critiques of CMM [18].
They observed that the chief criticism of CMM is not the

4

process itself, but the effects of focus on process
orientation.

While side effects of process focus may be viewed
as simply poor CMM implementation, organizations
with heavyweight processes are highly prone to poor
execution.

As with any other model, good and bad
implementations of CMM exist. We believe that bad
implementations are one of the main reasons for the
existence of many negative criticisms of CMM. Such
implementations are often characterized as in the table
below, whereas many good CMM implementations
address most of the criticism.

One way to enhance chances for a good CMM or
CMMI implementation is to use Scrum. Applying
Scrum and agile mindset while implementing CMMI
will help to recognize that

 We acknowledge that the CMM criticism listed in
the table below exist, but from our knowledge of
CMMI we consider it to be incorrect. But a bad
implementation of CMMI may be perceived this way.
Even though good CMMI implementations can be
done without agile methods, the table shows that
Scrum will contribute with a beneficial focus on issues
stemming from “bad” CMMI implementation.

CMM criticism Scrum support
CMM reveres process but
ignores people.

Scrum is the first
development process to
treat people issues the
same as other project
management issues [19].

Does not focus on
underlying organizational
problems that should be
solved.

A primary responsibility
of the ScrumMaster is to
maintain and resolve an
impediment list that
contains organizational
issues, personal issues,
and technical problems.

Ignores quality in the
software product
assuming an unproven
link between quality in the
process and quality in the
resulting product.
Differing project and
organizational
circumstances may mean
that a process that delivers
a good product in one
context delivers a poor
product in another
context.

The Scrum Product
Owner is responsible for
continuously
reprioritizing the Product
Backlog to maximize
business value in current
context.

Lack of business
orientation

The primary focus of
Scrum is on delivering
business value.

Poor awareness of
organizational context.

Creation and
prioritization of features,
tasks, and impediments is
always done in
organizational context by
inspected and adapting.

Ignores technical and
organizational
infrastructures.

Daily inspection and
adaptation in Scrum
meetings focuses on
technical and
organizational issues.

Encourages an internal
efficiency focus and thus
market and competition
blindness.

Focus is on delivering
business value. Type C
Scrum allows an entire
company to dominate a
market segment through
inspecting and adapting
in real time to
competition [17].

3. Scrum and CMMI: a magic potion

Systematic, an independent software systems company,
was established in 1985 and employs more than 400
people worldwide with offices in Denmark, USA, Finland
and the UK. Solutions developed by Systematic are used
by tens of thousands of people in the defense, healthcare,
manufacturing, and service industries. Systematic was
appraised 11 November 2005 using the SCAMPISM2
method and found to be CMMI level 5 compliant.

At Systematic CMMI Level 5 practices have reduced
rework by 42%, maintained estimation precision deviation
less than 10%, and assure 92% of all milestones are
delivered early or on time. At the same time, extra work
on projects has been significantly reduced.

2%

4%

6%

10%

8%

12%

9,8%

6,9% 6,4%

Q2 2005 Q3 2005 Q4 2005 Q1 2006

8,3%

6,0%
7,6%

Q2 2006 Q3 2006

6,8%

Q4 2006

4,7%

Q1 2007

2%

4%

6%

10%

8%

12%

9,8%

6,9% 6,4%

Q2 2005 Q3 2005 Q4 2005 Q1 2006

8,3%

6,0%
7,6%

Q2 2006 Q3 2006

6,8%

Q4 2006

4,7%

Q1 2007
Figure 1 Rework in Systematic

2 SM Capability Maturity Model Integration, and SCAMPI
are service marks of Carnegie Mellon University

5

More importantly, Systematic has transformed
over twenty years of experience into a unified set of
processes used by all software projects. Historical data
are systematically collected and analyzed to
continuously provide insight into the capability and
performance of the organization.

The use of a shared common process makes it
easier for people to move from project to project and
share experiences and lessons learned between
projects. Insight into the capability and performance of
processes makes it possible to evaluate performance of
new processes to performance of existing processes.
And this forms the foundation for continuous
improvement.

10%

20%

a

30%

50%

40%

60%

CMMI 1 CMMI 5

70%

80%

90%

100%

CMMI 5
SCRUM

CMMI 1

Project effort Rework

Work

Proces focus
CMMI

SCRUM

50 %

50 %

50 %

10 %

9 %

6 %

25 %

4 %

100 %

69 %

35 %

10%

20%

a

30%

50%

40%

60%

CMMI 1 CMMI 5

70%

80%

90%

100%

CMMI 5
SCRUM

CMMI 1

Project effort Rework

Work

Proces focus
CMMI

SCRUM

50 %

50 %

50 %

10 %

9 %

6 %

25 %

4 %

100 %

69 %

35 %

Figure 2: CMMI and Scrum Productivity Gains

In short, Systematic is able to deliver what the

customer has ordered on schedule, cost and quality
using 69% effort compared to a CMMI Level 1
company [12, 13].

 CMMI Level 5 is increasingly a requirement from
customers and key to obtaining large contracts,
especially within defence and healthcare. Customers
recognize that CMMI Level 5 gives high predictability
and better-engineered product for scalability,
maintainability, adaptability, and reliability.

CMMI provides insight into what processes are
needed to maintain a disciplined mature organization
capable of predicting and improving performance of
the organization and projects. Scrum provides
guidance for efficient management of projects in a way
that allows for high flexibility and adaptability. When
mixing the two, a magic potion emerges, where the
mindset from Scrum ensures that processes are
implemented efficiently while embracing change, and
CMMI ensures that all relevant processes are
considered.

Individually CMMI and Scrum has proven
benefits but also pitfalls. An Agile company may

implement Scrum correctly but fail due to lack of
institutionalization, (see section 3) or inconsistent or
insufficient execution of engineering or management
processes. CMMI can help Agile companies to
institutionalize Agile methods more consistently and
understand what processes to address.

A company can comply with CMMI, but fail to reach
optimal performance due to inadequate implementation of
processes. Scrum and other Agile methodologies can
guide such companies towards more efficient
implementation of CMMI process requirements.

3.1. Systematic Lean experience

Systematic made a strategic decision to use Lean as the
dominant paradigm for future improvements after
achieving CMMI level 5. Lean has demonstrated notable
results for many years in domains such as auto
manufacturing, and due to its popularity, has been adapted
to other domains, including product and software
development. Systematic identified Lean Software
Development [15] as the Lean dialect most relevant to
Systematic.

Applying Lean Software Development, as a driver for
future improvements in a company appraised to CMMI
level 5, depends on the adoption of a lean and agile
mindset in the implementation of the CMMI processes,
and Systematic placed special focus implementing the
Lean change in the spirit of the Agile Manifesto.

Lean competencies were established, through handing
out handout of books, formal and informal training, and
walk-the-talk activities. Project Managers were trained in
Lean Software Development, and Mary Poppendieck
visited Systematic to present a management seminar on
Lean Software Development.

This seminar established an understanding of the
Agile and Lean mindset. The causal dependencies between
the principles and tools in Lean Software Development
were analyzed, by Carsten Jakobsen appointed change
agent for Lean, and resulted in the model presented in
Table 1.

The model groups the thinking tools from Lean
Software Development into the categories: Engineering,
Management and People. Furthermore the elements are
arranged according to causal dependecies, where elements
to the right depends on one or more elements to the left.
These dependencies has been simplified into four phases
named: Value, Flow, Pull and Perfection. The model
facilitated a way to prioritize what thinking tools to focus
on. Left most tools were considered good candidates to
start with.

However the most important input was an analysis
showing improvement opportunities with a potential good
cost-benefit. Internal studies at Systematic shows that the

6

cost of fixing a defect raises from 1,6 hours when
detected in the coding phase, to 12 hours when
detected in the testing phase and 23,7 hours when
detected in the maintenance phase. Therefore
improvements that could eliminate or move defects to
earlier phases are interesting. We also observed that

our focus on quality, gradualy had led to longer test cycle,
and that drove a trend towards increased cycletime. It was
realized from a business value perspective, shorter cycle
time would be desirable.

.

 Value Flow Pull Perfection
Engineering P6 Integrity

T19 Refactor
T20 Test

P2 Amplify Learning
T5 Synchronization
T4 Iterations

P2 Amplify Learning
T3 Feedback
T6 Setbased
development

P6 Integrity
T18 Conceptual
T17 Perceived

Management P1 Create Value

T1 Find Waste
T2 Value Stream

P4 Deliver Fast

T11 Queue Theory
T12 Cost of delay

P7 See the Whole

T22 Contracts
T21 Measures
T10 Pull

P3 Defer Commitment
T7 Options thinking
T8 Defer commitment
T9 Decision making

People P5 Empower team
T16 Expertise

P5 Empower team
T14 Motivation

P5 Empower team
T15 Leadership

P5 Empower team
T13 Self determination

 Table 2 Lean Software Development arranged after causal dependencies

.

3.2. Systematic experience from pilots

The above analysis of Systematic improvement
opportunities and Lean causal dependencies led to the
decision to seek improvements based on the Lean
Software Development principles of Build Integrity In,
Amplify Learning and Deliver Fast.

These Lean Thinking tools gave inspiration to
consider Scrum and early testing.

In a period of approximately 4 months, two small
and two large projects described and piloted Scrum and
story based early testing.

3.2.1. Scrum. The first pilot was initiated on a request
for proposal, where Systematic inspired by Lean
principles suggested a delivery plan with bi-weekly
deliveries and stated explicit expectations to customer
involvement and feedback. The project had a team size
of 4 and concerned software for a customer in Danish
Government.

One of the main reasons that Systematic was
awarded the contract was the commitment to deliver
working code bi-weekly and thereby providing a very
transparent process to the customer. During project
execution, a high communication bandwidth was kept
between the team, the customer and users. This was
identified as one of the main reasons for achieving
high customer satisfaction.

The delivery plan and customer involvement
resulted in early detection of technological issues. Had
a traditional approach been used these issues would

have been identified much later with negative impacts on
cost and schedule performance.

However, productivity of this small project was at the
expected level compared to the productivity performance
baseline for small projects. Another small project with a
team size of 5 working for a Defense customer using
Scrum shows a similar productivity and the same
indications of high quality and customer satisfaction.

At Systematic, productivity for a project is defined as
the total number of lines of code produced divided by the
total project effort spent in hours. Data are attributed with
information related to programming language, type of
code: new, reuse or test.

Systematic has established and maintains a
productivity performance baseline (PPB) for productivity
compared to project size estimated in hours, from data
collected on completed projects [16]. The data shows that
productivity is high on small projects and declines with
the size of the project. The productivity performance
baseline in Systematic is divided into two groups: small
projects less than 4000 hours and large projects above
4000 hours. Productivity of small projects is 181% the
productivity of large projects.

When comparing the projects using Scrum to the
current productivity baseline it is seen that productivity for
small projects is insignificantly changed, but the
productivity for large projects shows a 201% increase in
productivity. As mentioned above, the large projects did
additional improvements, and it is therefore not possible to
attribute the benefit solely to Scrum. However the people
involved all agree that Scrum was a significant part of this
improvement.

7

There is a strong indication that large projects in
Systematic using Scrum will double productivity going
forward. Small projects in Systematic already show a
high productivity. We believe that this is because small
projects in Systematic always have been managed in a
way similar to Scrum. However quality and customer
satisfaction seems to be improved and we believe this
is because Scrum has facilitated a better understanding
of how small projects are managed efficiently.

3.2.2. Early testing. One large project with a team size
of 10 worked on a military messaging system. This
project was inspired from the Lean thinking tool
“Build Integrity In” to investigate how to do early test,
and as a result they invented an enhanced story-based
approach to early testing in software development. The
name “Story based” development was inspired from
XP, but our approach included new aspects like: short
incremental contributions, inspections, and was feature
driven.

The idea of story-based development was to
subdivide features of work, typically estimated to
hundreds of hours of work into smaller stories of 20-40
hours of work. The implementation of a story followed
a new procedure, where the first activity would be to
decide how the story could be tested before any code
was written. This test could then be used as the exit
criteria for implementation of the story.

The procedure included a few checkpoints where
an inspector would inspect the work produced, and
decide whether or not the developer could proceed to
the next activity in the procedure. These inspections
are lightweight, and could typically be done in less
than 5 minutes.

Many benefits from story-based development were
immediately apparent. The combination of a good
definition of when a story was complete, and early
incremental testing of the features, provided a very
precise overview of status and progress for both team
and other stakeholders.

Developing a series of small stories rather than
parts of a big feature creates a better focus on
completing a feature until it fulfills all the criteria for
being “done”.

This project finished early, and reduced the
number of coding defects in final test by 38%
compared to previous processes.

Another project with a team size of 19 working on
a module to a electronic patient record system, also
worked with early testing. They ensured that test
activities were integrated into development, with a
strong focus on “seeing the whole” and understanding
how the solution fit into the customer’s domain. For
each week the project defined a goal to be achieved.

The project ensured that test and domain specialists were
co-located with the developers. This caused discussion and
reflection between testers, developers, user experience
engineers and software architects, before or very early in
the development of new functionality. As a consequence
the amount of remaining coding defects in final test were
reduced by 42% compared to previous processes.

Based on these two projects, it was concluded that
test activities should be an integrated activity through out
the projects’ lifetime, and Scrum inherently supports this,
through cross-functional teams and frequent deliveries to
the customer. Furthermore it was concluded that the story-
based software development method should be the default
recommended method for software development in
projects.

3.2.3. Real needs. A customer sent a request for proposal
on a fixed set of requirements. When Systematic
responded, we expressed our concern that the scope and
contents expressed in the requirements were beyond the
customer’s real needs.

Systematic decided to openly share the internal
estimation of the requirements with the customer, for the
purpose of narrowing scope by removing requirements not
needed or too expensive compared to the customer’s
budget. The customer agreed to re-evaluate the
requirement specification, and the result was that
requirements and price were reduced by 50%.

This experience supports results in a Standish Group
Study reported at XP2002 by Jim Johnson, showing that
64% of features in a fixed price contract are never or
rarely used by end-users.

We believe that this illustrates how important it is to
have a frank and open discussion with the customer, in
order to find out what the real needs are. Success is not
achieved by doing the largest project, but by doing the
project that provides the most value for the customer,
leaving time for software developers to work with other
customers with real needs. This strategy is strongly
supported by Scrum.

3.3. Adoption of agile methods

The result of the pilots were two-fold: it confirmed
the general idea of using Lean mindset as source for
identification of new improvements, and secondly it
provided two specific successful improvements, Scrum
and story-based early testing, showing how agile methods
can be adopted while maintaining CMMI compliance. An
important insight for Systematic was that adoption of these
agile methods involved only small adjustments to existing
processes. The main difference was to adopt a lean and
agile mindset in interpretation of existing processes.

8

The evaluation of the results from the pilot
projects led to the decision of adopting Scrum and
story based early testing. One consequence of adopting
story based early testing, was an enhanced focus on the
ability to continously integrate and build the software
of the project. Some projects established an objective
that at least one build should be produced per day, and
that the time from when a build fails until next
succesful build must not be more than a working day.
In a CMMI level 5 company a key activity is to
maintain statistical control of sub processes as a first
step in quantitatively improving the sub process. In this
example Systematic looked at the time it took to fix

failed builds as data to support the goal. A system was
setup to gather data automatically from the projects build
server, and control charts were established, see figure 2.
This is a good illustration of how disciplines
institutionalized with CMMI, can be used in the adoption
and institutionalization of agile practices. These methods
are now the default choice for new projects, and are
integrated in the process descriptions at Systematic.

Fix time of failed builds

0

2

4

6

8

10

378 380 384 385 386 387 388 391 393 394 398 399 401 410 411 415 416 417 423 434

Build ID

H
ou

rs

Fix Time
LCL of avg fix time
Avg fix time
UCL of avg fix time

UCLx= 8 74

LCLx= 0

Mean= 2 1

 Figure 3 Control Chart for fix-time of failed builds

4. Conclusion

This paper shows that CMMI and Scrum can be
successfully mixed. The mix results in significantly
improved performance while maintaining compliance
to CMMI Level 5 as compared to performance with
either CMMI or Scrum alone.

Scrum pilot projects showed significant gains in
productivity and quality over traditional methods.
These results led to an ROI based decision to more
widely introduce Scrum and consider other Agile
practices in Systematic. Scrum now reduces every
category of work (defects, rework, total work required,
and process overhead) by almost 50%.

For Agile companies the article has presented how
Generic Practices can be used to institutionalize agile
practices and we presented Lean Software
Development [19] as an operational tool to identify
improvement opportunities in a CMMI 5 company.

Companies in defense, aerospace, and other
industries that require high maturity of processes,
should carefully consider introducing Agile practices

and all software companies should consider introducing
CMMI practices.

Our recommendation to the Agile community is to
use the CMMI generic practices from CMMI Level 3 to
amplify the benefits from Agile methods. Our
recommendation to the CMMI community is that Agile
methods can fit into your CMMI framework and will
provide exciting improvements to your organization.

5. References

[1] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis,
The Capability Maturity Model ®: Guidelines for
Improving the Software Process. Boston: Addison-Wesley,
1995.

[2] M. B. Chrissis, Konrad, and Shrum, CMMI Second Edition:
Guidelines for Process Integration and Product
Improvement.: Addison-Wesley, 2006.

[3] D. R. Goldenson and D. L. Gibson, "Demonstrating the
impacts and benefits of CMMI," CrossTalk, October 2003.

[4] D. D. o. Science, "Maturity of customer and suppliers in the
public sector," 2006.

[5] J. Sutherland, "Agile Development: Lessons Learned from
the First Scrum," Cutter Agile Project Management
Advisory Service: Executive Update, vol. 5, pp. 1-4, 2004.

9

[6] K. Schwaber, "Scrum Development Process," in
OOPSLA Business Object Design and Implementation
Workshop, J. Sutherland, D. Patel, C. Casanave, J.
Miller, and G. Hollowell, Eds. London: Springer, 1997.

[7] H. Ziv and D. Richardson, "The Uncertainty Principle in
Software Engineering," in submitted to Proceedings of
the 19th International Conference on Software
Engineering (ICSE'97), 1997.

[8] W. S. Humphrey, A Discipline for Software
Engineering: Addison-Wesley, 1995.

[9] P. Wegner, "Why Interaction Is More Powerful Than
Algorithms," Communications of the ACM, vol. 40, pp.
80-91, May 1997.

[10] P. DeGrace and L. H. Stahl, Wicked problems, righteous
solutions : a catalogue of modern software engineering
paradigms. Englewood Cliffs, N.J.: Yourdon Press,
1990.

[11] M. Fowler and J. Highsmith, "The Agile Manifesto,"
Dr. Dobbs, July 13 2001.

[12] Krasner and Houston, "Using the Cost of Quality
Approach for Software," CrossTalk, November 1998.

[13] M. Diaz and J. King, "How CMM Impacts Quality,
Productivity, Rework, and the Bottom Line," CrossTalk,
March 2002.

[14] M. B. Chrissis, Konrad, and Shrum, CMMI – guideline
for process integration and product improvement, 2002.

[15] M. Poppendieck and T. Poppendieck, Lean Software
Development: An Implementation Guide: Addison-
Wesley, 2006.

[16] M. K. Kulpa and K. A. Johnson, Interpreting the
CMMI: A Process Improvement Approach. Boca Raton:
Auerbach Publications, 2003.

[17] J. Sutherland, "Future of Scrum: Parallel Pipelining of
Sprints in Complex Projects," in AGILE 2005
Conference, Denver, CO, 2005.

[18] J. Rose, I. Aaen, and P. Axel Nielsen, "The Industrial
Age, the Knowledge Age, the Internet Age: Improving
Software Management," Aalborg University 2004.

 [19] J. O. Coplien, "Personal issues caused over 50% of
productivity losses in the ATT Bell Labs Pasteur Project
analysis of over 200 case studies," Personal
communication ed, J. Sutherland, Ed. Lynby, Denmark,
2006.

	Abstract
	1. Introduction
	1.1. CMMI
	1.2. Scrum

	2. Guide for mixing CMMI and Agile
	2.1. How CMMI can improve Agile
	2.1.1. Establish and maintain an organizational policy for planning and performing Agile Methods (GP 2.1). The first step toward institutionalization of Agile Methods is to establish how and when they will be used in the organization. An organization might determine that Agile Methods will be used on all projects or some subset of projects based on size, type of product, technology, or other factors. This policy is a way to clearly communicate the organization’s intent regarding Agile Methods. In keeping with the Agile Principle of face-to-face conversions at “all hands meeting” or a visit by a senior manager during a project’s kick off could be used to communicate the policy.
	2.1.2. Establish and maintain the plan for performing Agile Methods (GP2.2). This practice can help ensure that Agile Methods do not degrade into undisciplined hacking. The expectation is that Agile Methods are planned and that a defined process exists and is followed. The defined process should include a sequence of steps capturing the minimum essential information needed to describe what a project really does. The plan would also capture the essential aspects of how the other 10 generic practices are to be implemented in the project. In Scrum, some of this planning is likely to be captured in a product backlog and/or sprint backlog, most likely within a tool as opposed to a document.
	2.1.3. Provide adequate resources for performing Agile Methods (GP 2.3). Every project wants, needs, and expects competent professionals, adequate funding, and appropriate facilities and tools. Implementing an activity to explicitly manage these wants and needs has proved useful. In Scrum, for example, these needs may be reviewed and addressed at the Sprint Planning Meeting and reconsidered when significant changes occur.
	2.1.4. Assign responsibility and authority for performing Agile Methods (GP 2.4). For a project to be successful, clear responsibility and authority need to be defined. Usually this includes a combination of role descriptions and assignments. The definitions of these roles identify a level of responsibility and authority. For example, a Scrum Project would assign an individual or individuals to the roles of Product Owner, ScrumMaster, and Team. Expertise in the Team is likely to include a mix of domain experts, system engineers, software engineers, architects, programmers, analysts, QA experts, testers, UI designers, etc. Scrum assigns the team as a whole the responsibility for delivering working software. The Product Owner is responsible for specifying and prioritizing the work. The ScrumMaster is responsible for assuring the Scrum process is followed. Management is responsible for providing the right expertise to the team.
	2.1.5. Train the people performing Agile Methods (GP 2.5). The right training can increase the performance of competent professionals and supports introducing new methods into an organization. Institutionalization of the Agile Method being used requires consistent training. This practice includes determining the individuals to train, defining the exact training to provide, and performing the needed training. Training can be provided using many different approaches, including programmed instruction, formalized on-the-job training, mentoring, and formal and classroom training. It is important that a mechanism be defined to ensure that training has occurred and is beneficial.
	2.1.6. Place designated work products under appropriate level of configuration management (GP 2.6). The purpose of a project is to produce deliverable product(s). This product is often a collection of a number of intermediate or supporting work products (code, manuals, software systems, build files, etc.). Each of these work products has a value and often goes through a series of steps that increase their value. The concept of configuration management is intended to protect these valuable work products by defining the level of control, for example, version control or baseline control and perhaps multiple levels of baseline control to use within the project.
	2.1.7. Identify and involve the relevant stakeholders as planned (GP 2.7). Involving the customer as a relevant stakeholder is a strength of Agile Methods. This practice further identifies the need to ensure that the expected level of stakeholder involvement occurs. For example, if the project depends on customer feedback with each increment, build, or sprint, and involvement falls short of expectations it is then necessary to communicate to the appropriate level, individual, or group in the organization to allow for corrective action as corrective action may be beyond the scope of the project team. In advanced Scrum implementations, this is often formalized as a MetaScrum [17] where stakeholders serve as a board of directors for the Product Owner.
	2.1.8. Monitor and control Agile Methods against the plan and take appropriate corrective action (GP 2.8). This practice involves measuring actual performance against the project’s plan and taking corrective action. Direct day-to-day monitoring is a strong feature of the Daily Scrum Meeting, the Release Burndown Chart shows how much work remains at the beginning of each Sprint, and the Sprint Burndown Chart shows total task hours remaining per day. Scrum enhances the effectiveness of the plan by allowing the Product Owner to inspect and adapt to maximize ROI, rather than merely assuring plan accuracy.
	2.1.9. Objectively evaluate adherence to the Agile Methods and address noncompliance (GP2.9). This practice is based on having someone not directly responsible for managing or performing project activities evaluate the actual activities of the project. Some organizations implement this practice as both an assurance activity and coaching activity. The coaching concept matches many Agile Methods. The ScrumMaster has primary responsibility for adherence to Scrum practices, tracking progress, removing impediments, resolving personnel problems, and is usually not engaged in implementation of project tasks. The Product Owner has primary responsibility for assuring software meets requirements and is high quality.
	2.1.10. Review the activities, status, and results of the Agile Methods with higher-level management and resolve issues (GP2.10). The purpose of this practice is to ensure that higher-level management has appropriate visibility into the project activities. Different managers have different needs for information. Agile Methods have a high level of interaction, for example, Scrum has a Sprint Planning Meeting, Daily Scrum Meetings, a Sprint Review Meeting, and a Sprint Retrospective Meeting. Management needs are supported by transparency of status data produced by the Scrum Burndown Chart combined with defect data. Management responsibilities are to (1) provide strategic vision, business strategy, and resources, (2) remove impediments surfaced by Scrum teams that the teams cannot remove themselves, (3) ensure growth and career path of staff, and (4) challenge the Scrum teams to move beyond mediocrity. The list of impediments generated by the Scrum teams is transparent to management and it is their responsibility to assure they are removed in order to improve organizational performance.
	2.1.11. Establish and maintain the description of Agile Methods (GP 3.1). This practice is a refinement of GP2.2 above. The only real difference is that description of Agile Methods in this practice is expected to be organization-wide and not unique to a project. The result is that variability in how Agile Methods are performed would be reduced across the organization; and therefore more exchange between projects of people, tools, information and products can be supported.
	2.1.12. Collect the results from using Agile Methods to support future use and improve the organization’s approach to Agile Methods (GP 3.2).
	This practice supports the goal of learning across projects by collecting the results from individual projects. The Scrum Sprint Retrospective Meeting could be used as the mechanism for this practice.

	2.2. Critiques of CMM

	3. Scrum and CMMI: a magic potion
	3.1. Systematic Lean experience
	3.2. Systematic experience from pilots
	3.2.1. Scrum. The first pilot was initiated on a request for proposal, where Systematic inspired by Lean principles suggested a delivery plan with bi-weekly deliveries and stated explicit expectations to customer involvement and feedback. The project had a team size of 4 and concerned software for a customer in Danish Government.
	3.2.2. Early testing. One large project with a team size of 10 worked on a military messaging system. This project was inspired from the Lean thinking tool “Build Integrity In” to investigate how to do early test, and as a result they invented an enhanced story-based approach to early testing in software development. The name “Story based” development was inspired from XP, but our approach included new aspects like: short incremental contributions, inspections, and was feature driven.
	3.2.3. Real needs. A customer sent a request for proposal on a fixed set of requirements. When Systematic responded, we expressed our concern that the scope and contents expressed in the requirements were beyond the customer’s real needs.

	3.3. Adoption of agile methods

	4. Conclusion
	5. References

